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Abstract. Zero-shot learning (ZSL) methods have been studied in the
unrealistic setting where test data are assumed to come from unseen
classes only. In this paper, we advocate studying the problem of general-
ized zero-shot learning (GZSL) where the test data’s class memberships
are unconstrained. We show empirically that naively using the classifiers
constructed by ZSL approaches does not perform well in the generalized
setting. Motivated by this, we propose a simple but effective calibration
method that can be used to balance two conflicting forces: recognizing
data from seen classes versus those from unseen ones. We develop a per-
formance metric to characterize such a trade-off and examine the utility
of this metric in evaluating various ZSL approaches. Our analysis fur-
ther shows that there is a large gap between the performance of existing
approaches and an upper bound established via idealized semantic em-
beddings, suggesting that improving class semantic embeddings is vital
to GZSL.

1 Introduction

The availability of large-scale labeled training images is one of the key factors
that contribute to recent successes in visual object recognition and classification.
It is well-known, however, that object frequencies in natural images follow long-
tailed distributions [1,2,3]. For example, some animal or plant species are simply
rare by nature — it is uncommon to find alpacas wandering around the streets.
Furthermore, brand new categories could just emerge with zero or little labeled
images; newly defined visual concepts or products are introduced everyday. In
this real-world setting, it would be desirable for computer vision systems to
be able to recognize instances of those rare classes, while demanding minimum
human efforts and labeled examples.

Zero-shot learning (ZSL) has long been believed to hold the key to the above
problem of recognition in the wild. ZSL differentiates two types of classes: seen
and unseen, where labeled examples are available for seen classes only. Without
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labeled data, models for unseen classes are learned by relating them to seen ones.
This is often achieved by embedding both seen and unseen classes into a common
semantic space, such as visual attributes [4,5,6] or word2vec representations of
the class names [7,8,9]. This common semantic space enables transferring models
for the seen classes to those for the unseen ones [10].

The setup for ZSL is that once models for unseen classes are learned, they are
judged based on their ability to discriminate among unseen classes, assuming the
absence of seen objects during the test phase. Originally proposed in the seminal
work of Lampert et al. [4], this setting has almost always been adopted for eval-
uating ZSL methods [10,11,12,13,14,15,8,16,17,18,19,20,21,22,23,24,25,26,27,28].

But, does this problem setting truly reflect what recognition in the wild en-
tails? While the ability to learn novel concepts is by all means a trait that any
zero-shot learning systems should possess, it is merely one side of the coin. The
other important — yet so far under-studied — trait is the ability to remember
past experiences, i.e., the seen classes.

Why is this trait desirable? Consider how data are distributed in the real
world. The seen classes are often more common than the unseen ones; it is
therefore unrealistic to assume that we will never encounter them during the
test stage. For models generated by ZSL to be truly useful, they should not only
accurately discriminate among either seen or unseen classes themselves but also
accurately discriminate between the seen and unseen ones.

Thus, to understand better how existing ZSL approaches will perform in the
real world, we advocate evaluating them in the setting of generalized zero-shot
learning (GZSL), where test data are from both seen and unseen classes and
we need to classify them into the joint labeling space of both types of classes.
Previous work in this direction is scarce. See related work for more details.

Our contributions include an extensive empirical study of several existing
ZSL approaches in this new setting. We show that a straightforward application
of classifiers constructed by those approaches performs poorly. In particular,
test data from unseen classes are almost always classified as a class from the
seen ones. We propose a surprisingly simple yet very effective method called
calibrated stacking to address this problem. This method is mindful of the two
conflicting forces: recognizing data from seen classes and recognizing data from
unseen ones. We introduce a new performance metric called Area Under Seen-
Unseen accuracy Curve (AUSUC) that can evaluate ZSL approaches on how well
they can trade off between the two. We demonstrate the utility of this metric
by evaluating several representative ZSL approaches under this metric on three
benchmark datasets, including the full ImageNet Fall 2011 release dataset [29]
that contains approximately 21,000 unseen categories.

We complement our comparative studies in learning methods by further es-
tablishing an upper bound on the performance limit of ZSL. In particular, our
idea is to use class-representative visual features as the idealized semantic em-
beddings to construct ZSL classifiers. We show that there is a large gap between
existing approaches and this ideal performance limit, suggesting that improving
class semantic embeddings is vital to achieve GZSL.
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The rest of the paper is organized as follows. Section 2 reviews relevant
literature. We define GZSL formally and shed lights on its difficulty in Section 3.
In Section 4, we propose a method to remedy the observed issues in the previous
section and compare it to related approaches. Experimental results, detailed
analysis, and discussions are provided in Section 5, 6, and 7, respectively.

2 Related Work

There has been very little work on generalized zero-shot learning. [8,17,30,31]
allow the label space of their classifiers to include seen classes but they only test
on the data from the unseen classes. [9] proposes a two-stage approach that first
determines whether a test data point is from a seen or unseen class, and then ap-
ply the corresponding classifiers. However, their experiments are limited to only
2 or 6 unseen classes. We describe and compare to their methods in Section 4.3,
5, and the Supplementary Material. In the domain of action recognition, [32]
investigates the generalized setting with only up to 3 seen classes. [33] and [34]
focus on training a zero-shot binary classifier for each unseen class (against seen
ones) — it is not clear how to distinguish multiple unseen classes from the seen
ones. Finally, open set recognition [35,36,37] considers testing on both types of
classes, but treating the unseen ones as a single outlier class.

3 Generalized Zero-Shot Learning

In this section, we describe formally the setting of generalized zero-shot learning.
We then present empirical evidence to illustrate the difficulty of this problem.

3.1 Conventional and Generalized Zero-shot Learning

Suppose we are given the training data D = {(xn ∈ RD, yn)}Nn=1 with the
labels yn from the label space of seen classes S = {1, 2, · · · ,S}. Denote by
U = {S + 1, · · · ,S + U} the label space of unseen classes. We use T = S ∪ U to
represent the union of the two sets of classes.

In the (conventional) zero-shot learning (ZSL) setting, the main goal is to
classify test data into the unseen classes, assuming the absence of the seen classes
in the test phase. In other words, each test data point is assumed to come from
and will be assigned to one of the labels in U .

Existing research on ZSL has been almost entirely focusing on this setting
[4,10,11,12,13,14,15,8,16,17,18,19,20,21,22,23,24,25,26,27,28]. However, in real ap-
plications, the assumption of encountering data only from the unseen classes is
hardly realistic. The seen classes are often the most common objects we see in
the real world. Thus, the objective in the conventional ZSL does not truly reflect
how the classifiers will perform recognition in the wild.

Motivated by this shortcoming of the conventional ZSL, we advocate studying
the more general setting of generalized zero-shot learning (GZSL), where we no
longer limit the possible class memberships of test data — each of them belongs
to one of the classes in T .
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3.2 Classifiers

Without the loss of generality, we assume that for each class c ∈ T , we have
a discriminant scoring function fc(x), from which we would be able to derive
the label for x. For instance, for an unseen class u, the method of synthesized
classifiers [28] defines fu(x) = wT

ux, where wu is the model parameter vector for
the class u, constructed from its semantic embedding au (such as its attribute
vector or the word vector associated with the name of the class). In ConSE
[17], fu(x) = cos(s(x),au), where s(x) is the predicted embedding of the data
sample x. In DAP/IAP [38], fu(x) is a probabilistic model of attribute vectors.
We assume that similar discriminant functions for seen classes can be constructed
in the same manner given their corresponding semantic embeddings.

How to assess an algorithm for GZSL? We define and differentiate the fol-
lowing performance metrics: AU→U the accuracy of classifying test data from
U into U , AS→S the accuracy of classifying test data from S into S, and fi-
nally AS→T and AU→T the accuracies of classifying test data from either seen
or unseen classes into the joint labeling space. Note that AU→U is the standard
performance metric used for conventional ZSL and AS→S is the standard metric
for multi-class classification. Furthermore, note that we do not report AT→T
as simply averaging AS→T and AU→S to compute AT→T might be misleading
when the two metrics are not balanced, as shown below.

3.3 Generalized ZSL is hard

To demonstrate the difficulty of GZSL, we report the empirical results of using
a simple but intuitive algorithm for GZSL. Given the discriminant functions, we
adopt the following classification rule

ŷ = arg max
c∈T

fc(x) (1)

which we refer to as direct stacking.
We use the rule on “stacking” classifiers from the following zero-shot learning

approaches: DAP and IAP [38], ConSE [17], and Synthesized Classifiers (SynC)
[28]. We tune the hyper-parameters for each approach based on class-wise cross
validation [28,26,33]. We test GZSL on two datasets AwA [38] and CUB [39]
— details about those datasets can be found in Section 5.

Table 1 reports experimental results based on the 4 performance metrics we
have described previously. Our goal here is not to compare between methods.
Instead, we examine the impact of relaxing the assumption of the prior knowledge
of whether data are from seen or unseen classes.

We observe that, in this setting of GZSL, the classification performance for
unseen classes (AU→T ) drops significantly from the performance in conventional
ZSL (AU→U ), while that of seen ones (AS→T ) remains roughly the same as in
the multi-class task (AS→S). That is, nearly all test data from unseen classes
are misclassified into the seen classes. This unusual degradation in performance
highlights the challenges of GZSL; as we only see labeled data from seen classes
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Table 1. Classification accuracies (%) on conventional ZSL (AU→U ), multi-class clas-
sification for seen classes (AS→S), and GZSL (AS→T and AU→T ), on AwA and CUB.
Significant drops are observed from AU→U to AU→T .

AwA CUB
Method AU→U AS→S AU→T AS→T AU→U AS→S AU→T AS→T

DAP [38] 51.1 78.5 2.4 77.9 38.8 56.0 4.0 55.1
IAP [38] 56.3 77.3 1.7 76.8 36.5 69.6 1.0 69.4

ConSE [17] 63.7 76.9 9.5 75.9 35.8 70.5 1.8 69.9
SynCo-vs-o [28] 70.1 67.3 0.3 67.3 53.0 67.2 8.4 66.5
SynCstruct [28] 73.4 81.0 0.4 81.0 54.4 73.0 13.2 72.0

during training, the scoring functions of seen classes tend to dominate those of
unseen classes, leading to biased predictions in GZSL and aggressively classifying
a new data point into the label space of S because classifiers for the seen classes
do not get trained on “negative” examples from the unseen classes.

4 Approach for GZSL

The previous example shows that the classifiers for unseen classes constructed
by conventional ZSL methods should not be naively combined with models for
seen classes to expand the labeling space required by GZSL.

In what follows, we propose a simple variant to the naive approach of di-
rect stacking to curb such a problem. We also develop a metric that measures
the performance of GZSL, by acknowledging that there is an inherent trade-off
between recognizing seen classes and recognizing unseen classes. This metric,
referred to as the Area Under Seen-Unseen accuracy Curve (AUSUC), balances
the two conflicting forces. We conclude this section by describing two related
approaches: despite their sophistication, they do not perform well empirically.

4.1 Calibrated stacking

Our approach stems from the observation that the scores of the discriminant
functions for the seen classes are often greater than the scores for the unseen
classes. Thus, intuitively, we would like to reduce the scores for the seen classes.
This leads to the following classification rule:

ŷ = arg max
c ∈ T

fc(x)− γI[c ∈ S], (2)

where the indicator I[·] ∈ {0, 1} indicates whether or not c is a seen class and γ
is a calibration factor. We term this adjustable rule as calibrated stacking.

Another way to interpret γ is to regard it as the prior likelihood of a data
point coming from unseen classes. When γ = 0, the calibrated stacking rule
reverts back to the direct stacking rule, described previously.

It is also instructive to consider the two extreme cases of γ. When γ → +∞,
the classification rule will ignore all seen classes and classify all data points into
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Fig. 1. The Seen-Unseen accuracy Curve (SUC) obtained by varying γ in the calibrated
stacking classification rule eq. (2). The AUSUC summarizes the curve by computing
the area under it. We use the method SynCo-vs-o on the AwA dataset, and tune hyper-
parameters as in Table 1. The red cross denotes the accuracies by direct stacking.

one of the unseen classes. When there is no new data point coming from seen
classes, this classification rule essentially implements what one would do in the
setting of conventional ZSL. On the other hand, when γ → −∞, the classification
rule only considers the label space of seen classes as in standard multi-way clas-
sification. The calibrated stacking rule thus represents a middle ground between
aggressively classifying every data point into seen classes and conservatively clas-
sifying every data point into unseen classes. Adjusting this hyperparameter thus
gives a trade-off, which we exploit to define a new performance metric.

4.2 Area Under Seen-Unseen Accuracy Curve (AUSUC)

Varying the calibration factor γ, we can compute a series of classification accu-
racies (AU→T , AS→T ). Fig. 1 plots those points for the dataset AwA using the
classifiers generated by the method in [28] based on class-wise cross validation.
We call such a plot the Seen-Unseen accuracy Curve (SUC).

On the curve, γ = 0 corresponds to direct stacking, denoted by a cross. The
curve is similar to many familiar curves for representing conflicting goals, such
as the Precision-Recall (PR) curve and the Receiving Operator Characteristic
(ROC) curve, with two ends for the extreme cases (γ → −∞ and γ → +∞).

A convenient way to summarize the plot with one number is to use the Area
Under SUC (AUSUC)1. The higher the area is, the better an algorithm is able
to balance AU→T and AS→T . In Section 5, Section 6, and the Supplementary
Material, we evaluate the performance of existing zero-shot learning methods
under this metric, as well as provide further insights and analyses.

An immediate and important use of the metric AUSUC is for model selection.
Many ZSL learning methods require tuning hyperparameters — previous work
tune them based on the accuracy AU→U . The selected model, however, does not
necessarily balance optimally between AU→T and AS→T . Instead, we advocate
using AUSUC for model selection and hyperparamter tuning. Models with higher

1 If a single γ is desired, the “F-score” that balances AU→T and AS→T can be used.
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values of AUSUC are likely to perform in balance for the task of GZSL. For
detailed discussions, see the Supplementary Material.

4.3 Alternative approaches

Socher et al. [9] propose a two-stage zero-shot learning approach that first pre-
dicts whether an image is of seen or unseen classes and then accordingly applies
the corresponding classifiers. The first stage is based on the idea of novelty de-
tection and assigns a high novelty score if it is unlikely for the data point to
come from seen classes. They experiment with two novelty detection strategies:
Gaussian and LoOP models [40]. We briefly describe and contrast them to our
approach below. The details are in the Supplementary Material.

Novelty detection The main idea is to assign a novelty score N(x) to each
sample x. With this novelty score, the final prediction rule becomes

ŷ =

{
arg maxc ∈ S fc(x), if N(x) ≤ −γ.
arg maxc ∈ U fc(x), if N(x) > −γ. (3)

where −γ is the novelty threshold. The scores above this threshold indicate
belonging to unseen classes. To estimate N(x), for the Gaussian model, data
points in seen classes are first modeled with a Gaussian mixture model. The
novelty score of a data point is then its negative log probability value under
this mixture model. Alternatively, the novelty score can be estimated using the
Local Outlier Probabilities (LoOP) model [40]. The idea there is to compute the
distances of x to its nearest seen classes. Such distances are then converted to an
outlier probability, interpreted as the likelihood of x being from unseen classes.

Relation to calibrated stacking If we define a new form of novelty score
N(x) = maxu ∈ U fu(x) − maxs ∈ S fs(x) in eq. (3), we recover the prediction
rule in eq. (2). However, this relation holds only if we are interested in predicting
one label ŷ. When we are interested in predicting a set of labels (for example,
hoping that the correct labels are in the top K predicted labels, (i.e., the Flat
hit@K metric, cf. Section 5), the two prediction rules will give different results.

5 Experimental Results

5.1 Setup

Datasets We mainly use three benchmark datasets: the Animals with At-
tributes (AwA) [38], CUB-200-2011 Birds (CUB) [39], and ImageNet
(with full 21,841 classes) [41]. Table 2 summarizes their key characteristics.

Semantic spaces For the classes in AwA and CUB, we use 85-dimensional
and 312-dimensional binary or continuous-valued attributes, respectively [38,39].
For ImageNet, we use 500-dimensional word vectors (word2vec) trained by
the skip-gram model [7,42] provided by Changpinyo et al. [28]. We ignore classes
without word vectors, resulting in 20,345 (out of 20,842) unseen classes. We
follow [28] to normalize all but binary embeddings to have unit `2 norms.
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Table 2. Key characteristics of the studied datasets.

Dataset Number of Number of Total number
name seen classes unseen classes of images

AwA† 40 10 30,475

CUB‡ 150 50 11,788

ImageNet§ 1000 20,842 14,197,122

†: following the split in [38]. ‡: following [28] to report the average over 4 random splits. §: seen

and unseen classes from ImageNet ILSVRC 2012 1K [41] and Fall 2011 release [29], respectively.

Visual features We use the GoogLeNet deep features [43] pre-trained on
ILSVRC 2012 1K [41] for all datasets (all extracted with the Caffe package [44]).
Extracted features come from the 1,024-dimensional activations of the pooling
units, as in [20,28].

Zero-shot learning methods We examine several representative conventional
zero-shot learning approaches, described briefly below. Direct Attribute Predic-
tion (DAP) and Indirect Attribute Prediction (IAP) [38] are probabilistic models
that perform attribute predictions as an intermediate step and then use them
to compute MAP predictions of unseen class labels. ConSE [17] makes use of
pre-trained classifiers for seen classes and their probabilitic outputs to infer the
semantic embeddings of each test example, and then classifies it into the unseen
class with the most similar semantic embedding. SynC [28] is a recently pro-
posed multi-task learning approach that synthesizes a novel classifier based on
semantic embeddings and base classifiers that are learned with labeled data from
the seen classes. Two versions of this approach — SynCo-v-o and SynCstruct —
use one-versus-other and Crammer-Singer style [45] loss functions to train clas-
sifiers. We use binary attributes for DAP and IAP, and continuous attributes
and word2vec for ConSE and SynC, following [38,17,28].

Generalized zero-shot learning tasks There are no previously established
benchmark tasks for GZSL. We thus define a set of tasks that reflects more
closely how data are distributed in real-world applications.

We construct the GZSL tasks by composing test data as a combination of im-
ages from both seen and unseen classes. We follow existing splits of the datasets
for the conventional ZSL to separate seen and unseen classes. Moreover, for the
datasets AwA and CUB, we hold out 20% of the data points from the seen
classes (previously, all of them are used for training in the conventional zero-shot
setting) and merge them with the data from the unseen classes to form the test
set; for ImageNet, we combine its validation set (having the same classes as its
training set) and the 21K classes that are not in the ILSVRC 2012 1K dataset.

Evaluation metrics While we will primarily report the performance of ZSL
approaches under the metric Area Under Seen-Unseen accuracy Curve (AUSUC)
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developed in Section 4.1, we explain how its two accuracy components AS→T
and AU→T are computed below.

For AwA and CUB, seen and unseen accuracies correspond to (normalized-
by-class-size) multi-way classification accuracy, where the seen accuracy is com-
puted on the 20% images from the seen classes and the unseen accuracy is
computed on images from unseen classes.

For ImageNet, seen and unseen accuracies correspond to Flat hit@K (F@K),
defined as the percentage of test images for which the model returns the true
label in its top K predictions. Note that, F@1 is the unnormalized multi-way
classification accuracy. Moreover, following the procedure in [8,17,28], we eval-
uate on three scenarios of increasing difficulty: (1) 2-hop contains 1,509 unseen
classes that are within two tree hops of the 1K seen classes according to the Im-
ageNet label hierarchy2. (2) 3-hop contains 7,678 unseen classes that are within
three tree hops of the seen classes. (3) All contains all 20,345 unseen classes.

5.2 Which method to use to perform GZSL?

Table 3 provides an experimental comparison between several methods utilizing
seen and unseen classifiers for generalized ZSL, with hyperparameters cross-
validated to maximize AUSUC. Empirical results on additional datasets and
ZSL methods are in the Supplementary Material.

The results show that, irrespective of which ZSL methods are used to gen-
erate models for seen and unseen classes, our method of calibrated stacking for
generalized ZSL outperforms other methods. In particular, despite their prob-
abilistic justification, the two novelty detection methods do not perform well.
We believe that this is because most existing zero-shot learning methods are
discriminative and optimized to take full advantage of class labels and semantic
information. In contrast, either Gaussian or LoOP approach models all the seen
classes as a whole, possibly at the cost of modeling inter-class differences.

Table 3. Performances measured in AUSUC of several methods for Generalized Zero-
Shot Learning on AwA and CUB. The higher the better (the upper bound is 1).

AwA CUB
Method Novelty detection [9] Calibrated Novelty detection [9] Calibrated

Gaussian LoOP Stacking Gaussian LoOP Stacking

DAP 0.302 0.272 0.366 0.122 0.137 0.194
IAP 0.307 0.287 0.394 0.129 0.145 0.199

ConSE 0.342 0.300 0.428 0.130 0.136 0.212
SynCo-vs-o 0.420 0.378 0.568 0.191 0.209 0.336
SynCstruct 0.424 0.373 0.583 0.199 0.224 0.356

2 http://www.image-net.org/api/xml/structure_released.xml

http://www.image-net.org/api/xml/structure_released.xml


10 Wei-Lun Chao∗, Soravit Changpinyo∗, Boqing Gong, and Fei Sha

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

AwA

AU→T

A
S
→

T

 

 

DAP:        0.366

IAP:          0.394

ConSE:    0.428

SynC
o−v−o

: 0.568

SynC
struct

: 0.583

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CUB (Split 1)

AU→T

A
S
→

T

 

 

DAP:        0.205

IAP:          0.211

ConSE:    0.208

SynC
o−v−o

: 0.338

SynC
struct

: 0.354

Fig. 2. Comparison between several ZSL approaches on the task of GZSL for AwA
and CUB.
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Fig. 3. Comparison between ConSE and SynC of their performances on the task of
GZSL for ImageNet where the unseen classes are within 2 tree-hops from seen classes.

5.3 Which Zero-shot Learning approach is more robust to GZSL?

Fig. 2 contrasts in detail several ZSL approaches when tested on the task of
GZSL, using the method of calibrated stacking. Clearly, the SynC method dom-
inates all other methods in the whole ranges. The crosses on the plots mark the
results of direct stacking (Section 3).

Fig. 3 contrasts in detail ConSE to SynC, the two known methods for large-
scale ZSL. When the accuracies measured in Flat hit@1 (i.e., multi-class clas-
sification accuracy), neither method dominates the other, suggesting the differ-
ent trade-offs by the two methods. However, when we measure hit rates in the
top K > 1, SynC dominates ConSE. Table 4 gives summarized comparison in
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Table 4. Performances measured in AUSUC by different zero-shot learning approaches
on GZSL on ImageNet, using our method of calibrated stacking.

Unseen Method Flat hit@K
classes 1 5 10 20

2-hop ConSE 0.042 0.168 0.247 0.347
SynCo-vs-o 0.044 0.218 0.338 0.466
SynCstruct 0.043 0.199 0.308 0.433

3-hop ConSE 0.013 0.057 0.090 0.135
SynCo-vs-o 0.012 0.070 0.119 0.186
SynCstruct 0.013 0.066 0.110 0.170

All ConSE 0.007 0.030 0.048 0.073
SynCo-vs-o 0.006 0.034 0.059 0.097
SynCstruct 0.007 0.033 0.056 0.090

AUSUC between the two methods on the ImageNet dataset. We observe that
SynC in general outperforms ConSE except when Flat hit@1 is used, in which
case the two methods’ performances are nearly indistinguishable. Additional
plots can be found in the Supplementary Material.

6 Analysis on (Generalized) Zero-shot Learning

Zero-shot learning, either in conventional setting or generalized setting, is a
challenging problem as there is no labeled data for the unseen classes. The per-
formance of ZSL methods depends on at least two factors: (1) how seen and
unseen classes are related; (2) how effectively the relation can be exploited by
learning algorithms to generate models for the unseen classes. For generalized
zero-shot learning, the performance further depends on how classifiers for seen
and unseen classes are combined to classify new data into the joint label space.

Despite extensive study in ZSL, several questions remain understudied. For
example, given a dataset and a split of seen and unseen classes, what is the best
possible performance of any ZSL method? How far are we from there? What is
the most crucial component we can improve in order to reduce the gap between
the state-of-the-art and the ideal performances?

In this section, we empirically analyze ZSL methods in detail and shed light
on some of those questions.

Setup As ZSL methods do not use labeled data from unseen classes for training
classifiers, one reasonable estimate of their best possible performance is to mea-
sure the performance on a multi-class classification task where annotated data
on the unseen classes are provided.

Concretely, to construct the multi-class classification task, on AwA and
CUB, we randomly select 80% of the data along with their labels from all
classes (seen and unseen) to train classifiers. The remaining 20% will be used
to assess both the multi-class classifiers and the classifiers from ZSL. Note that,
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Fig. 4. We contrast the performances of GZSL to multi-class classifiers trained with
labeled data from both seen and unseen classes on the dataset ImageNet-2K. GZSL
uses word2vector (in red color) and the idealized visual features (G-attr) as semantic
embeddings (in black color).

for ZSL, only the seen classes from the 80% are used for training — the portion
belonging to the unseen classes are not used.

On ImageNet, to reduce the computational cost (of constructing multi-class
classifiers which would involve 20,345-way classification), we subsample another
1,000 unseen classes from its original 20,345 unseen classes. We call this new
dataset ImageNet-2K (including the 1K seen classes from ImageNet). The
subsampling procedure is described in the Supplementary Material and the main
goal is to keep the proportions of difficult unseen classes unchanged. Out of those
1,000 unseen classes, we randomly select 50 samples per class and reserve them
for testing and use the remaining examples (along with their labels) to train
2000-way classifiers.

For ZSL methods, we use either attribute vectors or word vectors (word2vec)
as semantic embeddings. Since SynCo-vs-o [28] performs well on a range of datasets
and settings, we focus on this method. For multi-class classification, we train
one-versus-others SVMs. Once we obtain the classifiers for both seen and unseen
classes, we use the calibrated stacking decision rule to combine (as in general-
ized ZSL) and vary the calibration factor γ to obtain the Seen-Unseen accuracy
Curve, exemplified in Fig. 1.

How far are we from the ideal performance? Fig. 4 displays the Seen-
Unseen accuracy Curves for ImageNet-2K — additional plots on ImageNet-
2K and similar ones on AwA and CUB are in the Supplementary Material.
Clearly, there is a large gap between the performances of GZSL using the default
word2vec semantic embeddings and the ideal performance indicated by the
multi-class classifiers. Note that the cross marks indicate the results of direct
stacking. The multi-class classifiers not only dominate GZSL in the whole ranges
(thus, with very high AUSUCs) but also are capable of learning classifiers that
are well-balanced (such that direct stacking works well).



An Empirical Study & Analysis of GZSL for Object Recognition in the Wild 13

Table 5. Comparison of performances measured in AUSUC between GZSL (using
word2vec and G-attr) and multi-class classification on ImageNet-2K. Few-shot
results are averaged over 100 rounds. GZSL with G-attr improves upon GZSL with
word2vec significantly and quickly approaches multi-class classification performance.

Method Flat hit@K
1 5 10 20

word2vec 0.04 0.17 0.27 0.38
G-attr from 1 image 0.08±0.003 0.25±0.005 0.33±0.005 0.42±0.005

GZSL G-attr from 10 images 0.20±0.002 0.50±0.002 0.62±0.002 0.72±0.002
G-attr from 100 images 0.25±0.001 0.57±0.001 0.69±0.001 0.78±0.001
G-attr from all images 0.25 0.58 0.69 0.79

Multi-class classification 0.35 0.66 0.75 0.82

How much can idealized semantic embeddings help? We hypothesize that
a large portion of the gap between GZSL and multi-class classification can be
attributed to the weak semantic embeddings used by the GZSL approach.

We investigate this by using a form of idealized semantic embeddings. As the
success of zero-shot learning relies heavily on how accurate semantic embeddings
represent visual similarity among classes, we examine the idea of visual features
as semantic embeddings. Concretely, for each class, semantic embeddings can be
obtained by averaging visual features of images belonging to that class. We call
them G-attr as we derive the visual features from GoogLeNet. Note that, for
unseen classes, we only use the reserved training examples to derive the semantic
embeddings; we do not use their labels to train classifiers.

Fig. 4 shows the performance of GZSL using G-attr — the gaps to the multi-
class classification performances are significantly reduced from those made by
GZSL using word2vec. In some cases (see the Supplementary Material for
more comprehensive experiments), GZSL can almost match the performance of
multi-class classifiers without using any labels from the unseen classes!

How much labeled data do we need to improve GZSL’s performance?
Imagine we are given a budget to label data from unseen classes, how much those
labels can improve GZSL’s performance?

Table 5 contrasts the AUSUCs obtained by GZSL to those from mutli-class
classification on ImageNet-2K, where GZSL is allowed to use visual features as
embeddings — those features can be computed from a few labeled images from
the unseen classes, a scenario we can refer to as “few-shot” learning. Using about
(randomly sampled) 100 labeled images per class, GZSL can quickly approach
the performance of multi-class classifiers, which use about 1,000 labeled images
per class. Moreover, those G-attr visual features as semantic embeddings improve
upon word2vec more significantly under Flat hit@K = 1 than when K > 1.

We further examine on the whole ImageNet with 20,345 unseen classes in
Table 6, where we keep 80% of the unseen classes’ examples to derive G-attr
and test on the rest, and observe similar trends. Specifically on Flat hit@1,
the performance of G-attr from merely 1 image is boosted threefold of that
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Table 6. Comparison of performances measured in AUSUC between GZSL with
word2vec and GZSL with G-attr on the full ImageNet with 21,000 unseen classes.
Few-shot results are averaged over 20 rounds.

Method Flat hit@K
1 5 10 20

word2vec 0.006 0.034 0.059 0.096

G-attr from 1 image 0.018±0.0002 0.071±0.0007 0.106±0.0009 0.150±0.0011
G-attr from 10 images 0.050±0.0002 0.184±0.0003 0.263±0.0004 0.352±0.0005
G-attr from 100 images 0.065±0.0001 0.230±0.0002 0.322±0.0002 0.421±0.0002
G-attr from all images 0.067 0.236 0.329 0.429

by word2vec, while G-attr from 100 images achieves over tenfold. See the
Supplementary Material for details, including results on AwA and CUB.

7 Discussion

We investigate the problem of generalized zero-shot learning (GZSL). GZSL re-
laxes the unrealistic assumption in conventional zero-shot learning (ZSL) that
test data belong only to unseen novel classes. In GZSL, test data might also come
from seen classes and the labeling space is the union of both types of classes.
We show empirically that a straightforward application of classifiers provided
by existing ZSL approaches does not perform well in the setting of GZSL. Mo-
tivated by this, we propose a surprisingly simple but effective method to adapt
ZSL approaches for GZSL. The main idea is to introduce a calibration factor to
calibrate the classifiers for both seen and unseen classes so as to balance two con-
flicting forces: recognizing data from seen classes and those from unseen ones. We
develop a new performance metric called the Area Under Seen-Unseen accuracy
Curve to characterize this trade-off. We demonstrate the utility of this metric by
analyzing existing ZSL approaches applied to the generalized setting. Extensive
empirical studies reveal strengths and weaknesses of those approaches on three
well-studied benchmark datasets, including the large-scale ImageNet with more
than 20,000 unseen categories. We complement our comparative studies in learn-
ing methods by further establishing an upper bound on the performance limit of
GZSL. In particular, our idea is to use class-representative visual features as the
idealized semantic embeddings. We show that there is a large gap between the
performance of existing approaches and the performance limit, suggesting that
improving the quality of class semantic embeddings is vital to improving ZSL.
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