An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild

2

3

Wei-Lun (Harry) Chao^{*1} Soravit (B

Soravit (Beer) Changpinyo^{*1}

Boqing Gong²

Fei Sha^{1,3}

Challenges of recognition in the wild:

large-scale labeling space with a long-tail distribution

Zero-shot learning (ZSL):

 expand classifiers beyond *Seen* objects to *Unseen* objects using semantic embeddings (e.g., attributes, WORD2VEC)

Training of ZSL:

learn from Seen classes' images and semantic embeddings

Testing of *"conventional"* ZSL:

 classify images from Unseen classes into Unseen classes, unrealistically assuming the absence of Seen classes

Testing of *"generalized"* ZSL:

classify images from BOTH Seen & Unseen classes into the space of BOTH Seen & Unseen classes

Generalized ZSL (GZSL) is nontrivial!

- joint labeling space T = (S)een + (U)nseen
- scoring function of each class $f_c(\mathbf{x})$

$$\hat{y} = \operatorname{argmax}_{c \in T} f_c(x)$$

accuracy on Unseen classes suffers in GZSL

CUB dataset	Au → u	$As \rightarrow s$	Aυ→τ	$As \rightarrow T$
SynC [Changpinyo et al., 2016]	54.4	73.0	13.2	72.0

 $AP \rightarrow q$: accuracy of classifying images from P into the space of Q

Calibrated stacking:

$$\hat{y} = \operatorname*{argmax}_{c \in T} f_c(x) - \gamma \mathbb{I}[c \in S]$$

• effect: $\gamma \to \infty$: all into $U \qquad \gamma \to -\infty$: all into $S = \gamma = 0$: direct stacking

Area Under Seen Unseen Accuracy Curve (AUSUC):

- varying γ leads to the
 seen unseen accuracy
 curve (SUC) of (Aυ→τ, As→τ)
- Area Under SUC (AUSUC) to characterize the tradeoff

Extensive empirical studies

- Datasets: AwA, CUB, ImageNet (|S| = 1K, |U| = 21K)
- Comparing ZSL algorithms: DAP, IAP [Lampert et al., 2009], ConSE [Norouzi et al., 2014], SynC [Changpinyo et al., 2016]
- Calibrated stacking outperforms novelty detection
 [Socher et al., 2013] in adapting ZSL algorithms to GZSL

How far are we from ideal multi-class & GZSL performance?

- ImageNet-2K (1K Seen + 1K subsampled Unseen)
- multi-class classifiers trained on data from S + U
- semantic embeddings of GZSL:
 - (1) WORD2VEC

(2) G-attr: average visual features of each class of S + U

Method		hit @1	hit @5	
GZSL WORD2VEC		0.04	0.17	
	G-attr	0.25	0.58	
multi-	class classifiers	0.35	0.66	

[measured in AUSUC]

High quality semantic embeddings is vital to GZSL!

Poster ID 8