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This Supplementary Material provides the following additional details, results,
and analysis (along with their corresponding sections of the main text).

– Section 1: Hyper-parameter tuning strategies (Section 4.2 of the main text).
– Section 2: Novelty detection approaches: details and additional results (Sec-

tion 4.3 and 5.2 of the main text).
– Section 3: Comparison between zero-shot learning approaches: additional

ZSL algorithm, dataset, and results (Section 5 of the main text).
– Section 4: Analysis on (generalized) zero-shot learning: details and additional

results (Section 6 of the main text).

1 Hyper-parameter tuning strategies

1.1 Cross-validation with AUSUC

In Section 4.2 of the main text, we introduce the Area Under Seen-Unseen ac-
curacy Curve (AUSUC), which is analogous to many metrics in computer vision
and machine learning that balance two conflicting (sub)metrics, such as area
under ROC. To tune the hyper-parameters based on this metric1, we simulate
the generalized zero-shot learning setting during cross-validation.

Concretely, we split the training data into 5 folds A1, A2, A3, A4 and A5 so
that the class labels of these folds are disjoint. We further split 80% and 20% of
data from each fold (A1-A5, respectively) into pseudo-train and pseudo-test sets,
respectively. We then combine the pseudo-train sets of four folds (for example,
A1-A4) for training, and validate on (i) the pseudo-test sets of such four folds
(i.e., A1-A4) and (ii) the pseudo-train set of the remaining fold (i.e., A5). That
is, the remaining fold serves as the pseudo-unseen classes in cross-validation. We

? Equal contributions
1 AUSUC is computed by varying the γ factor within a range. If a single γ is desired,

another measure such as “F-score” balancing AU→T and AS→T can be used. One
can also assume a prior probability of whether any instance is seen or unseen to
select the factor.
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repeat this process for 5 rounds — each round selects a fold as the “remaining”
fold, and computes AUSUC on the corresponding validation set. Finally, the
average of AUSUCs over all rounds is used to select hyper-parameters.

1.2 Comparison to an alternative strategy

Another strategy for hyper-parameter tuning is to find two sets of hyper-paramet-
ers: one optimized for seen classes and the other for unseen classes. The stan-
dard cross-validation technique, where AS→S is optimized, can be used for the
former. For the latter, it has been shown that the class-wise cross-validation
technique [1,2,3], where the conventional zero-shot learning task is simulated,
outperforms the standard technique [1]. In this case, AU→U is optimized. We
thus use the first set of hyper-parameters to construct the scoring functions for
the seen classes, and use the second set for the unseen classes (cf. Section 3.2
and 3.3 of the main text).

In this subsection, we show that the strategy that jointly optimizes hyper-
parameters based on AUSUC in most cases leads to better models for GZSL
than the strategy that optimizes seen and unseen classifiers’ performances sep-
arately. On AwA and CUB, we perform 5-fold cross-validation based on the
two strategies and compare the performance of those selected models in Table 1.
In general, cross-validation based on AUSUC leads to better models for GZSL.
The exceptions are ConSE on AwA and DAP on CUB.

Table 1. Comparison of performance measured in AUSUC between two cross-
validation strategies on AwA and CUB. One strategy is based on accuracies (AS→S
and AU→U ) and the other is based on AUSUC. See text for details.

AwA CUB
Method CV strategies CV strategies

Accuracies AUSUC Accuracies AUSUC

DAP [4] 0.341 0.366 0.202 0.194
IAP [4] 0.366 0.394 0.194 0.199

ConSE [5] 0.443 0.428 0.190 0.212
SynCo-vs-o [1] 0.539 0.568 0.324 0.336
SynCstruct [1] 0.551 0.583 0.356 0.356

2 Novelty detection approaches: details and additional
results

In Section 4.3, we describe alternative approaches to calibrated stacking that are
based on the idea of novelty detection. The two novelty detection approaches —
Gaussian and LoOP [6] — have been explored by [7]. In this section, we provide
details and additional results on these approaches.
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2.1 Algorithms

In [7], Socher et al. first learn a mapping from the visual feature space to the
semantic embedding space. The novelty detection is then performed in this se-
mantic space. Below we describe how to compute novelty scores under Gaussian
and LoOP models.

Gaussian Training examples of seen classes are first mapped into the semantic
space and modeled by a Gaussian mixture model — each class is parameterized
by a mean vector and an isometric covariance matrix. The mean vector is set
to be the class’ semantic embedding and the covariance matrix is set to be the
covariance of all mapped training examples of that class. The novelty score of
a test data point is then its negative log probability value under this mixture
model.

LoOP Let XS be the set of all the mapped training examples from seen classes.
For a test sample x (also mapped into the semantic space), a context set C(x) ⊆
XS of k nearest neighbors is first defined. The probabilistic set distance pdist
from x to all the points in C(x) is then computed as follows

pdistλ(x, C(x)) = λ

√∑
x′∈C(x) d(x,x′)2

|C(x)|
, (1)

where d(x,x′) is chosen to be the Euclidean distance function. Such a distance
is then used to define the local outlier factor

lofλ(x) =
pdistλ(x, C(x))

Ex′∈C(x) [pdistλ(x′, C(x′))]
− 1. (2)

Finally, the Local Outlier Probability (LoOP), which can be viewed as the nov-
elty score, is computed as

LoOP (x) = max

{
0, erf

(
lofλ(x)

Zλ(XS)

)}
, (3)

where erf is the Gauss error function and Zλ(XS) = λ
√

Ex′∈XS [(lofλ(x′))2] is
the normalization constant.

2.2 Implementation details

We use the code provided by Socher et al. [7] and follow their settings. In par-
ticular, we train a two-layer neural network with the same loss function as in
[7] to learn a mapping from the visual feature space to the semantic embedding
space. We tune the hyper-parameter λ (a multiplier on the standard deviation)
in LoOP jointly with other hyper-parameters of zero-shot learning approaches —
although we empirically observe that λ does not significantly affect the novelty
detection rankings, consistent with the observations made by [6]. Following [7],
we set the number of neighbors (from the seen classes’ examples) k in LoOP to
be 20.
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2.3 Additional results

In Section 5.2 and Table 3 of the main text, we compare Gaussian and LoOP to
calibrated stacking, with hyper-parameters cross-validated to maximize AUSUC.
In Table 2, we show that calibrated stacking outperforms Gaussian and LoOP as
well when hyper-parameters are cross-validated to maximize accuracies (cf. Sec-
tion 1.2). We further show the SUCs of Gaussian, LoOP, and calibrated stacking
on AwA in Fig. 1. We observe the superior performance of calibrated stacking
over Gaussian and LoOP across all zero-shot learning approaches, regardless of
cross-validation strategies. Moreover, interestingly, we see that the curves for
Gaussian and LoOP cross each other in such a way that implies that Gaussian
has a tendency to classifying more data into “unseen” categories (consistent with
the observations reported by [7]).

Table 2. Performance measured in AUSUC for novelty detection (Gaussian and LoOP)
and calibrated stacking on AwA and CUB. Hyper-parameters are cross-validated to
maximize accuracies. Calibrated stacking outperforms Gaussian and LoOP in all cases.
Also, see Table 3 of the main text for the performance when hyper-parameters are
cross-validated to directly maximize AUSUC.

AwA CUB
Method Novelty detection [7] Calibrated Novelty detection [7] Calibrated

Gaussian LoOP Stacking Gaussian LoOP Stacking

DAP 0.280 0.250 0.341 0.126 0.142 0.202
IAP 0.319 0.289 0.366 0.132 0.149 0.194

ConSE 0.364 0.331 0.443 0.131 0.141 0.190
SynCo-vs-o 0.411 0.387 0.539 0.195 0.219 0.324
SynCstruct 0.424 0.380 0.551 0.199 0.225 0.356
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Fig. 1. Seen-Unseen accuracy Curves (SUC) for Gaussian (Gauss), LoOP, and cali-
brated stacking (Cal Stack) for all zero-shot learning approaches on AwA. Hyper-
parameters are cross-validated based on accuracies (top) and AUSUC (bottom). Cali-
brated stacking outperforms both Gaussian and LoOP in all cases.
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3 Comparison between zero-shot learning approaches:
additional algorithm, dataset, and results

3.1 Additional results for Section 5.3 of the main text

We provide additional SUC plots for comparing different zero-shot learning ap-
proaches, which complements Fig. 2 and Fig. 3 of Section 5.3 of the main text.

In particular, Fig. 2 provides SUCs for all splits of CUB and Fig. 3 pro-
vides SUCs for ImageNet 3-hop and All. As before, we observe the superior
performance of the method of SynC over other approaches in most cases.
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Fig. 2. Comparison of performance measured in AUSUC between different zero-shot
learning approaches on the four splits of CUB.

3.2 Additional algorithm

We examine an additional zero-shot learning algorithm ESZSL [8] on the GZSL
task. ESZSL learns a (linear) mapping from visual features to the semantic space
(e.g., attributes or word2vec) with well-designed regularization terms. The
mapped feature vector of a test instance is compared to semantic representations
of classes (e.g., via dot products) for classification. Contrast to DAP/IAP [4],
and similar to [9,10], ESZSL can easily incorporate continuous semantic repre-
sentations and directly optimize the classification performance on seen classes.
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Fig. 3. Comparison of performance measured in AUSUC between different zero-shot
learning approaches on ImageNet-3hop (left) and ImageNet-All (right).
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Table 3 shows the results on AwA and CUB, with the hyper-parameters cross-
validated to maximize AUSUC. Compared to other zero-shot learning algorithms
(cf. Table 3 in the main text), ESZSL outperforms DAP/IAP/ConSE, but is still
worse than both versions of SynC. Moreover, the proposed calibrated stacking
clearly leads to better results than both novelty detection methods for ESZSL.

Table 3. Performance of ESZSL (measured in AUSUC) on AwA and CUB. Hyper-
parameters are cross-validated to maximize AUSUC.

AwA CUB
Method Novelty detection [7] Calibrated Novelty detection [7] Calibrated

Gaussian LoOP Stacking Gaussian LoOP Stacking

ESZSL [8] 0.358 0.331 0.449 0.146 0.166 0.243

3.3 Additional dataset

We further experiment on another benchmark dataset, the SUN attribute
dataset (SUN) [11], which contains 14,340 images of 717 scene categories.
We extract the 1,024 dimensional GoogLeNet features [12] pre-trained on the
ILSVRC 2012 1K training set [13], and use the provided 102 continuous- and
binary-valued attributes. Following [1,4], we split the dataset into 10 folds with
disjoint classes (each with 71/72 classes), and in turn treat each fold as a test set
of unseen classes. We then report the average results over 10 rounds. Similar to
the setting on AwA and CUB, we hold out 20% of the data points from seen
classes and merge them with those of the unseen classes to form the test set.
The results are summarized in Table 4, where calibrated stacking outperforms
Gaussian and LoOP for all ZSL algorithms. Besides, both versions of SynC still
outperform the other ZSL algorithms.

Table 4. Performance measured in AUSUC of several methods for Generalized Zero-
Shot Learning on SUN. Hyper-parameters are cross-validated to maximize AUSUC.

SUN
Method Novelty detection [7] Calibrated

Gaussian LoOP Stacking

DAP 0.061 0.062 0.096
IAP 0.093 0.095 0.145

ConSE 0.120 0.122 0.200
ESZSL 0.017 0.018 0.026

SynCo-vs-o 0.144 0.146 0.242
SynCstruct 0.151 0.153 0.260
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4 Analysis on (generalized) zero-shot learning: details
and additional results

4.1 Subsampling procedure for constructing ImageNet-2K

In Section 6 of the main text, we construct ImageNet-2K by subsampling 1,000
unseen classes from the original 20,345 unseen classes of ImageNet to reduce
computational cost. We pick 74 classes from 2-hop, 303 from “pure” 3-hop (that
is, the set of 3-hop classes that are not in the set of 2-hop classes), and 623 from
the rest of the classes. These numbers are picked to maintain the proportions
of the three types of unseen classes in the original ImageNet (see Evaluation
Metrics in Section 5.1 of the main text for more details). Each of these classes
has between 1,050-1,550 examples.

4.2 Additional results

We provide additional SUC plots on the performance of GZSL with idealized
semantic embeddings G-attr in comparison to the performance of multi-class
classification: Fig. 4 for AwA and CUB and Fig. 5 for ImageNet-2K. As
observed in Fig. 4 of Section 6 of the main text, the gaps between GZSL with
visual attributes/word2vec and multi-class classifiers are reduced significantly.
The effect of G-attr is particularly immense on the CUB dataset, where GZSL
almost matches the performance of multi-class classifiers without using labels
from the unseen classes (0.54 vs. 0.59).
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Fig. 4. Comparison between GZSL and multi-class classifiers trained with labeled data
from both seen and unseen classes on the datasets AwA and CUB. GZSL uses visual
attributes (in red color) or G-attr (in black color) as semantic embeddings.

Finally, we provide additional results on the analysis of how much labeled
data needed to improve GZSL’s performance on AwA and CUB. In Table 5,
we see the same trend as in Table 5 and 6 of the main text; GZSL with G-attr
quickly approaches the performance of multi-class classifiers and large improve-
ments from GZSL with visual attributes are observed — even though these
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Fig. 5. Comparison between GZSL and multi-class classifiers trained with labeled
data from both seen and unseen classes on the dataset ImageNet-2K. GZSL uses
word2vec (in red color) or G-attr (in black color) as semantic embeddings.
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attributes are defined and annotated by human experts in this case. We also
provide in Table 6 and 7 the full versions of Table 5 and 6 of the main text, with
2-shot and 5-shot results included.

Table 5. Comparison of performance measured in AUSUC between GZSL (using
(human-defined) visual attributes and G-attr) and multi-class classification on AwA
and CUB. Few-shot results are averaged over 1,000 rounds. GZSL with G-attr im-
proves upon GZSL with visual attributes significantly. On CUB, the performance of
GZSL with visual attributes almost matches that of multi-class classification.

Method AwA CUB

Visual attributes 0.57 0.34
G-attr (1-shot) 0.55±0.04 0.26±0.02
G-attr (2-shot) 0.61±0.03 0.34±0.02

GZSL G-attr (5-shot) 0.66±0.02 0.44±0.01
G-attr (10-shot) 0.69±0.02 0.49±0.01
G-attr (100-shot) 0.71±0.003 -†

G-attr (all images) 0.71 0.54

Multi-class classification 0.81 0.59

†: We omit this setting as no class in CUB has more than 100 labeled images.

Table 6. Comparison of performance measured in AUSUC between GZSL (using
word2vec and G-attr) and multi-class classification on ImageNet-2K. Few-shot
results are averaged over 100 rounds. GZSL with G-attr improves upon GZSL with
word2vec significantly and quickly approaches multi-class classification performance.

Method Flat hit@K
1 5 10 20

word2vec 0.04 0.17 0.27 0.38
G-attr from 1 image 0.08±0.003 0.25±0.005 0.33±0.005 0.42±0.005
G-attr from 2 images 0.12±0.002 0.33±0.004 0.44±0.005 0.54±0.005

GZSL G-attr from 5 images 0.17±0.002 0.44±0.003 0.56±0.003 0.66±0.003
G-attr from 10 images 0.20±0.002 0.50±0.002 0.62±0.002 0.72±0.002
G-attr from 100 images 0.25±0.001 0.57±0.001 0.69±0.001 0.78±0.001
G-attr from all images 0.25 0.58 0.69 0.79

Multi-class classification 0.35 0.66 0.75 0.82
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