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1 Details on Faster R-CNN

Our model is implemented in TensorFlow (Abadi
et al., 2015). We follow Anderson et al. (2018) in
terms of model architecture, data splits, and pro-
cessing steps. We describe major components and
differences below. In particular, we use the lat-
est version of Visual Genome (v1.4), with 1600
object and 400 attribute categories. We also have
the “background” class for objects and the “no at-
tribute” class for attributes. We limit the number
of attributes per object to 16. We resize the im-
age to so that the maximum of height or width is
896. We train our model with a batch size of 64
for 50K steps, using SGD with momentum on an
8-core Google Cloud TPU1. We clip the gradient
if the norm is greater than 10. We use the cosine
learning rate schedule with 1K warm-up steps, in-
creasing the learning rate from 0.003 to 0.04 and
reducing it to 0.01 at step 20K and to 0.005 at step
40K. We apply random crops to images and use
batch normalization (Ioffe and Szegedy, 2015) as
well as DropBlock (Ghiasi et al., 2018) on block
3 and block 4 of the ResNet-101 during training.
Our features come from fc6 after ReLU.

2 Details on Image Captioning

Our model is implemented in TensorFlow (Abadi
et al., 2015). Our Transformer-based architec-
ture has a stack of 6 layers for both the encoder
and the decoder. The number of attention heads
is set to 8. We do not use positional encoding.
We have an additional dense projection layer for
each type of input features (see Figure 1 for ex-
amples). Moreover, for Faster-RCNN features,
we observe the best performance when first trans-
forming the 2048D input feature vector to a 64D
one (as in Ultra) using another projection layer,
and thus report accuracy numbers in this setting.

1cloud.google.com/tpu

At the same time, we also have these projection
layers in our VQA architecture when using Ultra
features (see the next section). We use Adam op-
timizer (Kingma and Ba, 2015) with a warm-up
style learning rate schedule, linearly increasing the
learning rate in the first 20 epochs until it reaches
0.000032 and then use a decay rate of 0.95 for ev-
ery 25 epochs. We tuned the initial learning rate
over {0.000016, 0.000032, 0.000064}. We train
our model with a batch size of 4096 on a 32-core
Google Cloud TPU for a total of 2 million steps.
Each training run takes approximately 4 days.

In Figure 1, we show how we convert an im-
age (pixels) to an input sequence of image features
to the Transformer-based model described in the
main text.

3 Details on VQA

Our model is implemented in TensorFlow (Abadi
et al., 2015). As mentioned in the main text, the
architecture is a simplified “up-down” model of
(Anderson et al., 2018). This architecture has two
major differences. First, it uses weight normal-
ization (Salimans and Kingma, 2016) followed by
ReLU instead of the more expensive gated hyper-
bolic tangent activation. Second, it uses multi-
modal combination by element-wise multiplica-
tion instead of by feature concatenation.

The only minor differences from Pythia v0.1 are
that we use Adam (Kingma and Ba, 2015), not its
variant AdaMax, and that we use a single classifier
layer instead of two vision and language layers in
all of our experiments. We use Pythia v0.1 (Jiang
et al., 2018) to preprocess VizWiz dataset and re-
tain 3135 top answers. Analogous to what we ob-
serve in our image captioning model, for Ultra fea-
tures, we see the best performance when scaling
and expanding the 64D input feature vector to a
2048D one (as in FRCNN) using another projec-
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Figure 1: Pipeline for converting an image to a sequence of image features in our highest performing image
captioning model on the Conceptual Captions benchmark, used as input to the Transformer-based model.

val test-dev test-standard
all all y/n num unans other all y/n num unans other

VizWiz (Gurari et al., 2018) - - - - - - 46.9 59.6 21.0 80.5 27.3
BAN (Kim et al., 2018) - - - - - - 51.6 68.1 17.9 85.3 31.5

Ours (FRCNN) 55.2 53.6 72.7 22.7 85.9 33.3 51.9 66.7 24.3 85.0 32.1
Ours (Ultra) 56.8 55.1 71.7 31.6 84.4 36.7 53.7 68.1 28.8 84.0 35.4

Table 1: Accuracy (%) for the VQA task on the VizWiz dataset. Additionally, we provide accuracy per answer type
on the test-dev and test-standard splits: yes/no (y/n), number (num), unanswerable (unans), and the rest (other).

tion layer, followed by ReLU. We thus report ac-
curacy numbers in this setting. We use a warm-up
style learning rate schedule, linearly increasing the
learning rate in the first 10 epochs until it reaches
the initial learning rate, and then use a decay rate
of 0.5 for every 20 epochs. We tune the ini-
tial learning rate over {0.00005, 0.0001, 0.0003,
0.0005, 0.001, 0.003}. We train our model with a
batch size of 192 on an 8-core Google Cloud TPU
for a total of 70K steps. Each training run takes
approximately 2 hours.

4 Full results on the VizWiz benchmark

Table 1 reports accuracy on additional splits of
VizWiz, complementing the one in the main text.
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