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= Simple and efficient zero-shot
learning (ZSL) methods for image
classification that are highly
effective.

= Predicting visual “exemplars”
from semantic representations via
kernel-based regression.

= Explicitly taking advantage of
clustering structures in the
semantic embedding space.

= [mproving upon several recent
state-of-the-art ZSL approaches.

Zero-Shot Learning

Classes in training & testing
phrases are disjoint.
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« Visual attributes (e.g.,
striped, black, four-legged)

 Word vectors of class
names

 WordNet hierarchy

Zero-shot learning model
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= Assume the existence of clustering structures in
the semantic embedding space.

= [Step 1] Represent each cluster with a visual
exemplar & learn to predict exemplars from their
corresponding semantic representations.

= [Step 2] Predict exemplars of “unseen” classes for
ZSL.

Step 1: Predicting visual exemplars

Notations
* a_:=the semantic representation of class c
= v, :=the target visual exemplar of class c
= ) :=amapping from a_to v, (to be learned)
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In this work
= v_Is the PCA projection of the average of visual features
of class c.
= P is a support vector regressor with RBF kernel.

Step 2: ZSL with Exemplars

What can we do with predicted visual
exemplars of “unseen” classes?

v, = Y(a,) for each unseen class u
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[EXEM only]
1-nearest neighbor
classification in the

[EXEM + ZSL algorithm]
Use predicted exemplars as
“ideal” semantic

exemplar space representations in any ZSL

algorithm.

AWA (animals) CUB (birds) SUN (scenes) ImageNet

# of seen classes 40 150
# of unseen classes 10 50 7271
Total # of images 30,475 11,788 14,340

Semantic
representations
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Per-class Accuracy
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ConSE [Norouziet al. 14]
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LatEm [xian et al. 16]

Baselines
CCA [Lu 16]

SynCovo [Changpinyo et al. 16]
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More Results & Analysis in the paper

= ZSL results when “peeking” into o1 F@1
labeled data of some unseen classes 0.14|
(from zero-shot to few-shot learning) 0.12|
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* |Improved results on Generalized Zero-
Shot Learning [Chao et al. ECCV16]
* Analysis on

accuracy
o
o

= PCA _ _ 0.0 —6— EXEM (heavy-seen)
= Support vector regression vs. Multi-layer . —&— SynC (heavy-seen)
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