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 Non-metric similarity is common 

 

• Human perception of face [1] 

 

• “Multiplex” social networks [2] 

• Links are formed for different 

reasons: same school, 

religion, zip code, hobbies, 

political views, etc. 

 

 Learning latent similarities 

• Model non-metric and noisy similarity values 

• “Localized” metrics focus on the relevant subset of 

features 

 Multiplicative combination of latent components 

• Leads to tractable inference 

• Yields sparse solutions 

Highlights 

Link prediction on a network of NIPS proceedings 

Compare to discriminative methods  (SVM, LMNN[3], 

ITML[4] ) for different features and K. 
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Introduction 

 Metric learning is insufficient for modeling similarity 

d(x, z) ≤ d(x, y) + d(y, z)  

Proposed Approach 

SCA 
• Observed data (xm, xn, s) 

• Latent components 

 sk ~ P(sk| xm, xn; θk) 

• Similarity 

s ~ P(s| s1, …, sK; λ) 
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Latent similarities 

– Latent components 

• Focus on a subset of features 

 

– Localized similarity values 

 

 

Combining latent components 

– Multiplicatively combine with OR gate 

 

 

 

 Marginalize out all latent components 

 

Inference and Learning 

• Tractable posterior over latent variables Sk 

•  EM algorithm  

• Learning each component independently in M step 

• Each component is fit analogously as a softly labeled 

logistic regression 

Experiments 

2-D embedding reveals network structure Sparse & disjoint features 
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True and recovered metrics (K = 5) 
Similarity prediction accuracies 
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