Highlights

> Learning latent similarities

- Model *non-metric and noisy* similarity values
- "Localized" metrics focus on the relevant *subset* of features

> Multiplicative combination of latent components

- Leads to *tractable* inference
- Yields *sparse* solutions

Introduction

> Metric learning is insufficient for modeling similarity

> Non-metric similarity is common

Human perception of face ^[1]

- "Multiplex" social networks ^[2] •
 - Links are formed for different reasons: same school, religion, zip code, hobbies, political views, etc.

Similarity Component Analysis Soravit Changpinyo*, Kuan Liu*, and Fei Sha **University of Southern California**

Inference and Learning

• Tractable posterior over latent variables S_k

- Learning each component independently in M step
- Each component is fit analogously as a softly labeled

Experiments

ITMLLMNNK = 1K = 3K = 5K = 7K = 10K = 20 2.7 ± 0.0 71.3 ± 0.2 72.8 ± 0.0 82.1 ± 0.1 91.5 ± 0.1 91.7 ± 0.1 91.8 ± 0.1 90.2 ± 0.4

USCUniversity of Southern California

>Link prediction on a network of NIPS proceedings

Compare to discriminative methods (SVM, LMNN^[3],

Link prediction accuracies and their standard errors (%) on a network of scientific papers

Ire	BASELINES			SCA-DIAG		SCA	
e	SVM	ITML	LMNN	K = 1	K.	K = 1	K.
V	73.3±0.0	-		64.8 ± 0.1	$\textbf{87.0} \pm \textbf{1.2}$	-	
V	75.3±0.0	-	-	67.0 ± 0.0	$\textbf{88.1} \pm \textbf{1.4}$	-	-
>	71.2 ± 0.0	81.1 ± 0.1	80.7±0.1	62.6 ± 0.0	81.0 ± 0.8	81.0 ± 0.0	$\textbf{87.6} \pm \textbf{1.0}$

Sparse & disjoint features

Diagonal values of metrics (K = 9)

References

[1] J. Laub, J. Macke, K. R. Müller, and F. Wichmann. *Inducing Metric Violations in*

[2] S. E. Fienberg, M. M. Meyer, and S. S.Wasserman. *Statistical Analysis of Multiple*

[3] K. Q. Weinberger and L. K. Saul. *Distance Metric Learning for Large Margin Nearest*

[4] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. *Information-theoretic Metric*