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S1 Details on Model Inference

S1.1 E-Step: Objective function

In Section 2, we have given the posterior distribution of the (hidden) local similarity value variables.
Below, we derive the form of expected complete data log-likelihood conditioned on a pair u,v. We
use the same notation as in Section 2.

Ep(s)[log(P (s, s1, . . . , sK|u,v))]

= Ep(s)[

K∑
k=1

(log(P (sk|u,v))) + log(P (s|s1, s2, ..., sK))]

= Ep(s)[

K∑
k=1

(sk log pk + (1− sk) log(1− pk)) + s log(1−
K∏

k=1

θ
1(sk=1)
k ) + (1− s)

K∑
k=1

sk log θk]

=

K∑
k=1

(q1−s
k rsk log pk + (1− q1−s

k rsk) log(1− pk))

+ Ep(s)[s log(1−
K∏

k=1

θ
1(sk=1)
k )] + (1− s)

K∑
k=1

q1−s
k rsk log θk

(S1)
where p(s) = Pr(s1, . . . , sK|u,v, s) =

∏K
k=1 Pr(sk|u,v, s). pk = P (sk = 1|u,v) is given by

eq. (2). qk = P (sk = 1|u,v, s = 0) and rk = P (sk = 1|u,v, s = 1) are given by eq. (7). Note
that the last equation uses the fact that Ep(s)(sk) = q1−s

k rsk.

The third term Ep(s)[s log(1−
∏K

k=1 θ
1(sk=1)
k )] is not tractable; variational methods can be used, as

described in [1].

S1.2 M-step: Optimization

We give the form of gradients with respect to M and L in the (noisy-)OR model. As given in
Section 2 and above, for the k-th aspect, the relevant terms in the expected log-likelihood given the
posteriors, from a single similarity assessment, are

Jk = wk log pk + (1− wk) log(1− pk) (S2)

where pk = P (sk = 1|u,v) = (1 + e−bk)[1− σ(dk − bk)] and wk denotes q1−s
k rsk.

∗Equal contributions
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(a) ToP
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(b) ToW

Figure S1: The normalized diagonal values of metrics for K = 9

Taking the derivative with respect to dk gives us

∂Jk
∂dk

= −wkσ + (1− wk)
σ(1− σ)

σ − (ck − 1)/ck
(S3)

where σ is a short form of σ(dk − bk) and ck = 1 + e−bk . For two different parameterizations
dk = (u− v)TMk(u− v) and dk = (u− v)TLT

kLk(u− v), we have

∂dk
∂Mk

= (u− v)(u− v)T

∂dk
∂Lk

= 2Lk(u− v)(u− v)T
(S4)

It follows that the gradients with respect to Mk and Lk are

∂Jk
∂Mk

= [−wkσ + (1− wk)
σ(1− σ)

σ − (ck − 1)/ck
](u− v)(u− v)T

∂Jk
∂Lk

= 2[−wkσ + (1− wk)
σ(1− σ)

σ − (ck − 1)/ck
]Lk(u− v)(u− v)T

(S5)

S2 Additional Information and Results on Link Prediction Tasks

NIPS 0-12 dataset The papers from the NIPS 0-12 dataset (Section 3.3) are organized into 9
sections, shown in Table S1.

Subset of features picked by sparse metrics In Fig. S1, we show the diagonal entries of the
metrics in the case of ToP and ToW features, both for K = 9. We can think of the diagonal entries
as the weights put on such features. Features picked by these metrics seem to be sparse and disjoint
– signified by the nonoverlapping spiky structure. This validates our assumption that each latent
component evaluates its similarity value using a different subset of features. We show corresponding
features according to these diagonal weights in Table S2 and Table S3. We observe that, for each
metric, its top features (words or topics) tend to appear rarely in the sections that the metric can
predict similarity well. In other words, two documents are similar in one aspect often because
they both lack a certain kind of features. One explanation is that each component tries to reduce
sensitivity when predicting similarity by picking features that are less varied in values.

Additional results on link prediction accuracies Besides the dataset described in the main pa-
per, we report link prediction accuracies on another network (we call NIPS-3), also sampled from
NIPS 0-12, to further validate the effectiveness of SCA. This network uses only 450 papers from
NIPS 1997 to NIPS 1999 and has 16059 edges. In this dataset, the numbers of papers are not bal-
anced across sections — there are significantly more papers in Learning Theory and Algorithms &
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ID Names ID Names ID Names
1 Cognitive Science 4 Algo. and Arch. 7 Visual Processing
2 Neuroscience 5 Implementation 8 Applications
3 Learning Theory 6 Speech & Sign. Proc. 9 Ctrl., Navi., & Plan.

Table S1: Section names for NIPS 1987 – 1999

Metric Top 5 Features
1 radio financial trains costs achieve
2 curve representations image attractor kalman
3 trained speech signals statistics class
4 retina robot gate regression size
5 learning model data state activity
6 stress margin evidence actor barto
7 dot views conclusion moody perturbation
8 implementation hmm kalman rbf vlsi
9 speech chip period vision regression

Table S2: Top five ToW features for each metric

Architectures than Implementations and Speech & Signal Processing. Nonetheless, in Table S4, we
see again that SCA achieves a significant improvement on the link prediction accuracies, similar to
that in Table 3 in the main text.

Additional results on edge component analysis In Section 3.3, we have observed characteris-
tic signatures from the latent components that result from edges between similar documents. One
natural question to ask is whether or not the lack of edges between dissimilar documents (in this
case, those from different sections) can give rise to such signatures, too. In Fig. S2, we show the
average component-wise dissimilarity values of edges between different sections (how much each
latent component believes a pair of articles from different sections should be dissimilar) for ToW
feature type with K = 9. Not surprisingly, we do not observe those telltale signatures - for those
pairs of data, almost all latent components vote them as being dissimilar strongly. This suggests that
those latent components have both high sensitivity and specificity.
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Figure S2: Average component-wise dissimilarity values of edges between different sections.
Darker indicates higher dissimilarity values.
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Metric Top 3 Features
1 1: human similarity subjects generalization performance similar

2: image images object recognition face feature features objects
3: model motor position control eye movement forward trajectory

2 29: motion direction figure velocity optical flow retina time
18: action state reinforcement policy actions learning reward
35: visual target system attention location information search

3 36: time eeg activity attractor data response brain signal single
1: human similarity subjects generalization performance similar

50: representation sequence representations information level
4 27: words user context word text information documents query

29: motion direction figure velocity optical flow retina time
2: image images object recognition face feature features objects

5 16: spike firing information rate time spikes neuron model input
2: image images object recognition face feature features objects

23: phase figure adaptation contour segment oscillators segments
6 31: kernel vector set support function data regression training

49: time series prediction signal filter neural gamma kalman
13: block blocks data time algorithm search program parallel

7 8: function functions bound theorem bounds loss error proof
24: learning error noise training weight generalization teacher
7: energy correlation binary function correlations population

8 13: block blocks data time algorithm search program parallel
41: recognition character characters digit neural segmentation

25: language connectionist symbol symbols set rules languages
9 22: time call path rl channel problem traffic routing rate paths

29: motion direction figure velocity optical flow retina time
30: distribution probability variables approximation distributions

Table S3: Top three ToP features for each metric

Feature BASELINES SCA-DIAG SCA
type SVM ITML LMNN K = 1 K∗ K = 1 K∗

BoW 73.3±0.0 - - 70.5 ± 0.1 89.5 ± 0.8 - -
ToW 80.4±0.0 - - 76.5 ± 0.1 87.8 ± 1.1 - -
ToP 75.1±0.0 83.8±0.2 75.4±0.3 70.5 ± 0.1 84.3 ± 0.9 83.6 ± 0.1 89.6 ± 1.1

Table S4: Link prediction accuracies and their standard errors (%) on NIPS3
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